Environmental Life Cycle Assessment of Gasoline Alternatives: MTBE and Ethanol Additives

Raymond Smith, John Abraham, Jane Bare, Mary Ann Curran

U.S. Environmental Protection Agency
Office of Research and Development
National Risk Management Research Laboratory

AIChE National Meeting, San Francisco, CA November 17, 2003

Life Cycle Assessment (LCA)

Capture the multimedia environmental effects of creating, using and disposing of a functional unit

Functional unit: an equally performing specific function

This work: one automobile traveling 12,000 miles. Results in different amounts of each gasoline alternative

M.A. Curran (1996) Environmental Life Cycle Assessment

Life Cycle Assessment (LCA)

Capture the multimedia environmental effects of creating, using and disposing of a functional unit

Cradle to grave analysis

M.A. Curran (1996) Environmental Life Cycle Assessment

Building a scientific foundation for sound environmental decisions

LCA Cradle to Grave Analysis

Environment

decisions

Life Cycle Assessment (LCA)

Capture the multimedia environmental effects of creating, using and disposing of a functional unit

Multimedia analysis

Inventory Approaches for LCA

Process chain vs. economic input/output approach

Economic input/output approach uses table of sector production and demand

Difficulty associated with emissions is that they (should) represent the whole sector

Building a scientific foundation for sound environmental decisions

Process Chain Approach for Gasoline Alternatives

Crude Oil Drilling Petroleum Refining **Bulk Terminal Storage** Refueling Stations Vehicle Operation

Corn Growing MTBE Production **EtOH Production** Dry and Wet Mills Building a scientific foundation for sound environmental decisions

Preliminary Total Inventory

lb air/yr	MTBE	EtOH	NonOxy
VOC	12	13	12
NOx	31	32	31
SOx	6.2	7.5	6.0
PM10	1.2	1.5	1.1
N2O	3.4E-02	9.1	3.3E-02
CO2	2000	1100	1900
Toxics	2300	880	830

Building a scientific foundation for sound environmental decisions

Preliminary Raw Material Acquisition Inventory

lb air/yr	MTBE	EtOH	NonOxy
VOC	0.31	0.41	0.34
NOx	6.0	7.2	6.6
SOx	1.7	1.8	1.8
PM10	0.22	0.59	0.24
N2O	1.2E-02	9.1	1.4E-02
CO2	640	-460	700
Toxics	2.0	0.48	2.2

Building a scientific foundation for sound environmental decisions

Preliminary Production Inventory

lb air/yr	MTBE	EtOH	NonOxy
VOC	1.8	1.6	1.7
NOx	5.1	4.7	4.1
SOx	4.4	5.5	4.0
PM10	0.26	0.26	0.22
N2O	2.2E-02	2.2E-02	1.9E-02
CO2	1300	1500	1200
Toxics	6.4	5.7	5.7

Building a scientific foundation for sound environmental decisions

Preliminary Use Inventory

lb air/yr	MTBE	EtOH	NonOxy
VOC	10	10	10
NOx	20	20	20
SOx	0.16	0.16	0.16
PM10	0.67	0.67	0.67
N2O	8.5E-06	8.6E-06	8.3E-06
CO2	1.1	1.1	1.1
Toxics	2200	880	820

Building a scientific foundation for sound environmental decisions

Preliminary Additive Production Inventory

lb air/yr	MTBE	EtOH
VOC	0.22	7.1E-03
NOx	1.1	0.67
SOx	0.66	1.7
PM10	5.0E-02	4.1E-02
N2O	3.6E-03	3.6E-03
CO2	200	350
Toxics	0.52	6.8E-02

What's Next?

Impact Assessment

Capture the multimedia environmental effects of creating, using and disposing of a functional unit

TRACI

Building a scientific foundation for sound environmental decisions

Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI)

- Ozone Depletion
- Global Warming
- Smog Formation
- Acidification
- Eutrophication
- Human Health Cancer

- Human Health Noncancer
- HH Criteria Pollutants
- Eco-toxicity
- Fossil Fuel Depletion
- Land Use
- Water Use

J.C. Bare et al. (2002) *J. Industrial Ecology* 6(3-4), 49-78.

What's Next?

Impact Assessment

Capture the multimedia environmental effects of creating, using and disposing of a functional unit

Taxonomy of impacts